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Abstract 
 
A key challenge to evaluate data-mining bias in stock return anomalies is that we do not observe 
all the variables considered by researchers. We overcome this challenge by constructing a 
“universe” of fundamental signals from financial statements and by using a bootstrap approach to 
measure the impact of data mining. We find that many fundamental signals are significant 
predictors of cross-sectional stock returns even after accounting for data mining. This predictive 
ability is more pronounced following high-sentiment periods, during earnings-announcement 
days, and among stocks with greater limits-to-arbitrage. Our evidence suggests that fundamental-
based anomalies are not a product of data mining, and they are best explained by mispricing. Our 
approach is general and can be applied to other categories of anomaly variables. 
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 “Economists place a premium on the discovery of puzzles, which in the context at hand 
amounts to finding apparent rejections of a widely accepted theory of stock market behavior.” 

 
Merton (1987, p. 104) 

 
 

1. Introduction 

 Finance researchers have devoted a considerable amount of time and effort to searching 

for stock return patterns that cannot be explained by traditional asset pricing models. As a result 

of these efforts, there is now a large body of literature reporting hundreds of cross-sectional return 

anomalies (Green, Hand, and Zhang (2013), Harvey, Liu, and Zhu (HLZ 2015), and McLean and 

Pontiff (2015)). An important debate in the literature is whether the abnormal returns documented 

in these studies are compensation for systematic risk, evidence of market inefficiency, or simply 

the result of extensive data mining. 

 Data-mining concern arises because “the more scrutiny a collection of data is subjected to, 

the more likely will interesting (spurious) patterns emerge” (Lo and MacKinlay (1990, p.432)).  

Intuitively, if enough variables are considered, then by pure chance some of these variables will 

generate abnormal returns even if they do not genuinely have any predictive ability for future stock 

returns. Lo and MacKinlay contend that the degree of data mining bias increases with the number 

of studies published on the topic. The cross section of stock returns is arguably the most researched 

and published topic in finance; hence, the potential for spurious findings is also the greatest.  

Although researchers have long recognized the potential danger of data mining, few studies 

have examined its impact on a broad set of cross-sectional stock return anomalies.1 The lack of 

research in this area is in part because of the difficulty to account for all the anomaly variables that 

have been considered by researchers. Although one can easily identify published variables, one 

                                                 
1 The exceptions are HLZ (2015) and McLean and Pontiff (2015). We note that many papers have examined the impact 
of data mining on individual anomalies (e.g., Jegadeesh and Titman (2001)). 
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cannot observe the numerous variables that have been tried but not published or reported due to 

the “publication bias.”2 In this paper, we overcome this challenge by examining a large and 

important class of anomaly variables, i.e., fundamental-based variables, for which a “universe” 

can be reasonably constructed.  

We focus on fundamental-based variables, i.e., variables derived from financial statements, 

for several reasons. First, many prominent anomalies such as the asset growth anomaly (Cooper, 

Gulen, and Schill (2008)) and the gross profitability anomaly (Novy-Marx (2013)) are based on 

financial statement variables. HLZ (2015) report that accounting variables represent the largest 

group among all the published cross-sectional return predictors. Second, researchers have 

considerable discretion to the selection and construction of fundamental signals. As such, there is 

ample opportunity for data snooping. Third and most importantly, although there are hundreds of 

financial statement variables and numerous ways of combining them, we can construct a 

“universe” of fundamental signals by using permutational arguments. The ability to construct such 

a universe is important because in order to account for the effects of data mining, one should not 

only include variables that were reported, but also variables that were considered but unreported 

(Sullivan, Timmermann, and White (2001)). Financial statement variables are ideally suited for 

such an analysis. 

 We construct a universe of fundamental signals by imitating the search process of a data 

snooper. We start with all accounting variables in Compustat that have a sufficient amount of data. 

We then use permutational arguments to construct over 18,000 fundamental signals. We choose 

the functional forms of these signals by following the previous academic literature and industry 

practice, but make no attempt to select specific signals based on what we think (or know) should 

                                                 
2 The publication bias refers to the fact that it is difficult to publish a non-result (HLZ (2015)).  
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work. Our construction design ensures a comprehensive sample that does not bias our search in 

any particular direction. 

 We form long-short portfolios based on each fundamental signal and assess the 

significance of long-short hedge returns by using a bootstrap procedure. The bootstrap approach 

is desirable in our context for several reasons. First, long-short returns are highly non-normal. 

Second, long-short returns across fundamental signals exhibit complex dependencies. Third, 

evaluating the performance of a large number of fundamental signals involves a multiple 

comparison problem.  

We follow Fama and French (2010) and randomly sample time periods with replacement. 

That is, we draw the entire cross section of anomaly returns for each time period. The simulated 

returns have the same properties as actual returns except that we set the true alpha for simulated 

returns to zero. We follow many previous studies and conduct our bootstrap analysis on the t-

statistics of alphas because t-statistics is a pivotal statistics and has better sampling properties than 

alphas. By comparing the cross-sectional distribution of actual t-statistics with that of simulated t-

statistics, we are able to assess the extent to which the observed performance of top-ranked signals 

is due to sampling error (i.e., data mining).  

Our results indicate that the top-ranked fundamental signals in our sample exhibit superior 

long-short performance that is not due to sampling variation. The bootstrapped p-values for the 

extreme percentiles of t-statistics are all less than 5%. For example, the 99th percentile of t-statistics 

for equal-weighted 4-factor alphas is 6.28 for the actual data. In comparison, none of the simulation 

runs have a 99th percentile of t-statistics that is as high as 6.28, indicating that we would not expect 

to find such extreme t-statistics under the null hypothesis of no predictive ability. The results for 

value-weighted returns are qualitatively similar. The 99th percentile of t-statistics for the actual 
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data is 3.29, with a bootstrapped p-value of 0.015, which indicates that only 1.5% of the simulation 

runs produce a 99th percentile of t-statistics higher than 3.29. Overall, our bootstrap results strongly 

suggest that the superior performance of the top fundamental signals cannot be attributed to pure 

chance. 

We divide our sample period into two halves and find that our main results hold in both 

sub-periods. More importantly, we find strong evidence of performance persistence. Signals 

ranked in the extreme quintiles during the first half of the sample period are more likely to stay in 

the same quintile during the second half of the sample period than switching to the opposite 

quintile. In addition, sorting based on alpha t-statistics during the first sub-period yields a 

significant spread in long-short returns during the second sub-period. These results provide further 

evidence that the predictive ability of fundamental signals is unlikely to be driven by data mining. 

We find qualitatively similar results when we apply our bootstrap procedure to alphas 

instead of t-statistics. That is, the extreme percentiles of actual alphas are significantly higher than 

their counterparts in the simulated data. Our results are also robust to alternative universe of 

fundamental signals. In particular, we obtain similar results when we impose more (or less) 

stringent data requirements on accounting variables. In addition, our results are unchanged when 

we use industry-adjusted financial ratios to construct fundamental signals. Finally, our main 

findings hold for small as well as large stocks.  

Having shown that fundamental-based anomalies are unlikely to be driven by data mining, 

we next investigate whether they are consistent with mispricing-based explanations. We perform 

three tests. First, behavioral arguments suggest that if the abnormal returns to fundamental-based 

trading strategies arise from mispricing, then they should be more pronounced among stocks with 

greater limits to arbitrage. Consistent with this prediction, we find that the t-statistics for top-
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performing fundamental signals are significantly higher among small, low-institutional ownership, 

high-idiosyncratic volatility, and low-analyst coverage stocks. Second, to the extent that 

fundamental-based anomalies are driven by mispricing (and primarily by overpricing), anomaly 

returns should be significantly higher following high-sentiment periods (Stambaugh, Yuan, and 

Yu (2012)). We find strong evidence consistent with this prediction. Third, behavioral theories 

suggest that predictable stock returns arise from corrections of mispricing and that price 

corrections are more likely to occur when new public information is released (La Porta et al. (1997) 

and Bernard, Thomas, and Wahlen (1997)). As such, we should expect the anomaly returns to be 

significantly higher during earnings announcement periods. Our results support this prediction. 

Overall, although we cannot rule out risk-based explanations, we document strong evidence 

consistent with mispricing-based explanations for fundamental-based anomalies. 

Our paper adds to the literature on fundamental analysis. Oh and Penman (1989) show that 

an array of financial ratios can predict future earnings changes and stock returns. Abarbanell and 

Bushee (1998) document that an investment strategy based on the nine fundamental signals 

identified in Lev and Thiagarajan (1993) yields significant abnormal returns. Piotroski (2000) finds 

that a firm's overall financial strength as measured by F-score has significant predictive power for 

subsequent stock returns. We contribute to this literature by providing the first study of an 

exhaustive list of fundamental signals and, more importantly, by showing that many of these 

signals possess genuine predictive ability for future stock returns (i.e., not a statistical artifact.)  

Our paper contributes to the anomalies literature by quantifying the data-mining effects in 

an important class of anomaly variables. A key innovation of our paper is to construct a “universe” 

of fundamental signals. We argue that to truly account for the data-mining effects, it is important 

that we consider not only published variables but also unpublished and unreported variables. 
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Although we focus only on financial statement variables in this paper, our approach is general and 

can be applied to other categories of anomaly variables such as macroeconomic variables.  

The closest paper to ours is HLZ (2015), who use standard multiple-testing methods to 

correct for data mining in 315 published factors. Standard multiple-testing methods, however, 

cannot account for the exact cross-sectional dependency in test statistics.3 Moreover, because 

unpublished factors are unobservable HLZ have to make assumptions about the underlying 

distribution of t-statistics for all tried factors. Our paper differs from HLZ in that we explicitly 

construct a universe of anomaly variables and we use a bootstrap procedure to account for data 

mining. Another related paper is McLean and Pontiff (2015), who use an out-of-sample approach 

to evaluate data-mining bias in market anomalies. They examine the post-publication performance 

of 97 anomalies and document an average performance decline of 58%. Our approach differs from 

and also complements that of McLean and Pontiff. In particular, although the out-of-sample test 

is a clean approach against data mining, it is not feasible for anomalies that were discovered only 

recently.4 A fundamental difference between our paper and both of the above two papers as well 

as many recent studies is that existing papers focus exclusively on published anomalies, whereas 

our paper examines both reported and unreported anomaly variables.   

 Our paper is inspired by a number of influential studies on data mining. Merton (1987) 

cautions that researchers may find return anomalies because they are too close to the data. Lo and 

MacKinlay (1990) investigate data-snooping biases and point out that grouping stocks into 

portfolios induces bias in statistical tests. Foster, Smith, and Whaley (1997) examine the effect of 

choosing a subset of all possible explanatory variables in predictive regressions. Sullivan, 

                                                 
3 In an extreme case, the Bonferroni method assumes all tests are independent. 
4 Finance is largely non-experimental and researchers often need to wait years to do an out-of-sample test. Therefore, 
the out-of-sample approach, while clean, “cannot be used in real time” (HLZ, p.5)). 
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Timmermann, and White (1999, 2001) construct a universe of technical and calendar-based trading 

rules and then use a bootstrap procedure to evaluate their performance.5  

Finally, our paper is related to several studies that employ a bootstrap approach to separate 

skill from luck in the mutual fund industry (Kosowski, Wermers, White, and Timmermann (2006) 

and Fama and French (2010)). The use of a survivor-bias-free database in these studies is crucial 

for drawing proper inference about the best performing funds. The analogy in our study is that in 

order to account for data mining we need to include all anomaly variables considered by 

researchers. Examining only the published anomalies is akin to looking for evidence of skill from 

a sample of surviving mutual funds. 

The rest of this paper proceeds as follows. Section 2 describes the data, sample, and 

methodology. Section 3 presents the empirical results. Section 4 concludes. 

 

2. Data, Sample, and Methodology 

2.1. Data and Sample 

We obtain monthly stock returns, share price, SIC code, and shares outstanding from the 

Center for Research in Security Prices (CRSP) and annual accounting data from Compustat. Our 

sample consists of NYSE, AMEX, and NASDAQ common stocks (with a CRSP share code of 10 

or 11) with data necessary to construct fundamental signals (described in Section 2.2 below) and 

compute subsequent stock returns. We exclude financial stocks, i.e., those with a one-digit SIC 

code of 6. We also remove stocks with a share price lower than $1 at the portfolio formation date. 

We obtain Fama and French (1996) three factors and the momentum factor from Kenneth French’s 

website. Our sample starts in July 1963 and ends in December 2013. 

                                                 
5 Our paper is also inspired by Kogan and Tian (2013), who conduct a data-mining exercise that evaluates the 
performance of an exhaustive list of 3- or 4-factor models constructed from 27 individual anomalies. 
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2.2. Fundamental Signals 

2.2.1. Construction Procedure 

We construct our universe of fundamental signals in several steps. We start with all 

accounting variables reported in Compustat that have a sufficient amount of data. Specifically, we 

require that each accounting variable have non-missing values in at least 20 years of our 50-year 

sample period. We also require that, for each accounting variable, the average number of firms 

with non-missing values is at least 1,000. We impose these data requirements to ensure a 

reasonable sample size and a meaningful asset pricing test.6 After applying these data screens and 

removing several redundant variables, we arrive at our list of 240 accounting variables. For brevity, 

we refer the reader to Table 1 for the complete list and description of these variables.  

Next, we scale each accounting variable (X) by fifteen different base variables such as total 

assets (Y) to construct financial ratios.7 We form financial ratios because financial statement 

variables are typically more meaningful when they are compared with other accounting variables. 

Financial ratios are also desirable in cross-sectional settings because they put companies of 

different size on an equal playing field.  

In addition to the level of the financial ratio (X/Y), we also compute year-to-year change 

(∆ in X/Y) and percentage change in financial ratios (%∆ in X/Y). Finally, we compute the 

percentage change in each accounting variable (%∆ in X), the difference between the percentage 

change in each accounting variable and the percentage change in a base variable (%∆ in X - %∆ in 

Y), and the change in each accounting variable scaled by a lagged base variable (∆X/lagY).  

                                                 
6 We show in Section 3.5.3 that our results are robust to alternative variable selection criteria. 
7 Table 2 contains a full list of the fifteen base variables. 
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The above process results in a total of 76 financial ratio configurations for each accounting 

variable (X).8 The functional forms of our signals are selected based on a survey of financial 

statement analysis textbooks and academic papers. Oh and Penman (1989), for example, consider 

a list of 68 fundamental signals, many of which are the level of and percentage change in various 

financial ratios (X/Y and %∆ in X/Y). Lev and Thiagarajan (1993) identify several signals of the 

form %∆ in X - %∆ in Y. Piotroski’s (2000) F-score consists of several variables that are changes 

in financial ratios (∆ in X/Y). Thomas and Zhang (2002) and Chan, Chan, Jegadeesh, and 

Lakonishok (2006) decompose accruals and consider several variables (e.g., inventory changes) 

of the form ∆X/lagY. Finally, Cooper, Gulen, and Schill (2008) define asset growth as the 

percentage change in total assets (%∆ in X). It is important to note that although we choose the 

functional forms of our signals based on prior literature, we do not select any specific signals based 

on what has been documented in the literature because doing so would introduce a selection bias. 

There are 240 accounting variables in our sample and for each of these variables we 

construct 76 fundamental signals. Using permutational arguments, we should have a total of 

18,240 (240×76) signals. The final number of fundamental signals included in our analysis is 

18,113, which is slightly smaller than 18,240 because not all the combinations of accounting 

variables result in meaningful signals (e.g., when X and Y are the same) and some of the 

combinations are redundant.  

2.2.2. Discussions 

Despite the large number of fundamental signals included in our sample, we acknowledge 

that our “universe” is incomplete for several reasons. First, we do not consider all accounting 

variables (because we require a minimum amount of data). Second, we consider only fifteen base 

                                                 
8 We refer the reader to Table 2 for a complete list of the 76 financial ratios and configurations. 
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variables. Third, in constructing fundamental signals, we use at most two years of data (the current-

year and previous year). Fourth, we use only accounting variables reported in Compustat and do 

not construct any additional variables based on prior studies.9 Fifth, we do not consider more 

complex transformations of the data such as those used in the construction of the organizational 

capital (Eisfeldt and Papanikolaou (2013)).  

As a result, one might argue that our universe may be too “small” and that we may have 

overlooked some fundamental signals that were considered by researchers. This, in turn, may bias 

our estimated p-values towards zero since the data-mining adjustment would not account for the 

full set of signals from which the successful ones are drawn. We do not believe this is a serious 

issue. It is difficult to imagine that researchers have considered many more signals than we have 

already included in our sample and that these omitted signals are systematically uninformative. If 

the signals we have overlooked are not too numerous or they are similarly informative about future 

stock returns as the existing signals, then our inference should not change.  

On the other hand, since we use permutational arguments, we may include signals that were 

not actually considered by researchers.10 This may lead to a loss of power so that even genuinely 

significant signals will appear to be insignificant. This is not a serious issue either because it would 

bias against us finding evidence of significant predictive ability. In other words, our results would 

be even stronger if we did not include those signals not considered by researchers. Nevertheless, 

to address the possibility of both under-searching and over-searching, we construct alternative 

universe of fundamental signals and conduct a sensitivity analysis in Section 3.5.3. 

                                                 
9 Constructing additional variables based on prior studies would introduce a selection bias.  
10 A related concern is that some signals in our universe may be difficult to motivate. We acknowledge that we do not 
identify a priori conceptual arguments for including any of the specific signals. We do so because we do not want to 
bias our search in any direction. We believe that all variables reported on financial statements contain at least some 
relevant information, and as such, can be justified as a potential predictive signal. 
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2.3. Long-short Strategies 

We sort all sample stocks into deciles based on each fundamental signal and construct 

equal-weighted as well as value-weighted portfolios.11 Following Fama and French (1996, 2008) 

and many previous studies, we form portfolios at the end of June in year t  by using accounting 

data from the fiscal year ending in calendar year t-1 and compute returns from July in year t to 

June in year t+1. We examine the strategy that buys stocks in the top decile and shorts stocks in 

the bottom decile. In most of our analyses, we focus on the absolute value of the alpha and its t-

statistics because the long and short can be easily switched. Take the asset growth anomaly as an 

example. High-asset growth firms tend to underperform low-asset growth firms (Cooper, Gulen, 

and Schill (2008)). Rather than keeping the alpha and its t-statistics negative, we flip the top and 

bottom portfolios to make them positive.  

We estimate CAPM 1-factor alpha, Fama-French 3-factor alpha, and Carhart 4-factor alpha 

by running the following time-series regressions.  

௜,௧ݎ ൌ ௜ߙ ൅ ܭܯ௜ߚ ௧ܶ ൅ ݁௜,௧     (1) 

௜,௧ݎ ൌ ௜ߙ ൅ ܭܯ௜ߚ ௧ܶ ൅ ௧ܤܯ௜ܵݏ ൅ ݄௜ܮܯܪ௧ ൅ ݁௜,௧   (2) 

௜,௧ݎ ൌ ௜ߙ ൅ ܭܯ௜ߚ ௧ܶ ൅ ௧ܤܯ௜ܵݏ ൅ ݄௜ܮܯܪ௧ ൅ ௧ܦܯ௜ܷݑ ൅ ݁௜,௧   (3) 

Where ri,t is the long-short hedge return for fundamental signal i in month t. MKT, SMB, HML, 

and UMD are market, size, value, and momentum factors (Fama and French (1996) and Carhart 

(1997)). 

  

                                                 
11 We examine both equal-weighted returns and value-weighted returns to demonstrate robustness and to mitigate 
concerns associated with each weighting scheme. 
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2.4. The Bootstrap 

2.4.1. Rationale 

The standard approach to evaluating the significance of a cross-sectional return predictor 

is to use the single-test t-statistic. A t-statistic above 2 is typically considered significant. The 

conventional inference can be misleading in our context for several reasons. First, long-short 

returns often do not follow normal distributions. In unreported analysis, we conduct a Jarque-Bera 

(JB) normality test on the long-short returns of 18,113 fundamental signals and find that normality 

is rejected for over 98% of the signals. Second, accounting variables are highly correlated with 

each other (some even exhibit perfect multi-collinearity). As a result, the long-short returns to 

fundamental-based trading strategies may display complex cross-sectional dependencies. Third, 

when we simultaneously evaluate the performance of a large number of signals, it involves a 

multiple comparison problem. By random chance, some of the 18,113 signals will appear to have 

significant t-statistics under conventional levels even if none of the variables has genuine 

predictive ability. As such, individual signals cannot be viewed in isolation; rather they should be 

evaluated relative to all other signals in the universe. 

Given the non-normal returns, the complex cross-sectional dependencies, and the multiple 

comparison issue, it is very difficult to use a parametric test to evaluate the significance of the 

observed performance of fundamental signals. The bootstrap approach allows for general 

distributional characteristics and is robust to any form of cross-sectional dependencies. In addition, 

the bootstrap automatically takes sampling uncertainty into account and provides inferences that 

does not rely on asymptotic approximations.  
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2.4.2. Procedure 

We randomly resample data to generate hypothetical long-short returns that, by 

construction, have the same properties as actual long-short returns except that we set true alpha to 

zero in the return population from which simulation samples are drawn. We follow Fama and 

French (2010) and many previous studies to focus on the cross-sectional distribution of t-statistics 

rather than alphas. Although alpha measures the economic magnitude of the abnormal 

performance, it suffers from a potential lack of precision and tends to exhibit spurious outliers. 

The t(α) provides a correction for the spurious outliers by normalizing the estimated alpha by the 

estimated variance of the alpha estimate. The t(α) is a pivotal statistic with better sampling 

properties. In addition, it is related to the information ratio of Treynor and Black (1973). 

We illustrate below how we implement our bootstrap procedure for the Carhart (1997) 4-

factor alphas. The application of the bootstrap procedure to raw returns or the other risk-adjusted 

returns is similar. Our bootstrap procedure involves the following steps: 

1. Estimate the Carhart 4-factor model for long-short returns associated with each 

fundamental signal and store the estimated alpha. Subtract the estimated alpha from raw long-short 

returns and store the demeaned returns. 

2. Resample the demeaned returns to generate simulated long-short returns. We follow 

Fama and French (2010) and randomly sample the time periods with replacement. That is, a 

simulation run is a random sample of 606 months, drawn (with replacement) from the 606 calendar 

months of July 1963 to December 2013. When we bootstrap a particular time period, we draw the 

entire cross-section at that point in time. We also resample Fama-French factors using the same 

time period for each simulation run. 
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3. Estimate the Carhart 4-factor model using simulated long-short returns and factors. Store 

the estimated alpha as well as its t-statistics. Compute and store the various cross-sectional 

percentiles of the t-statistics. 

4. Repeat steps 2-3 for 1,000 iterations to generate the empirical distribution for cross-

sectional statistics of t-statistics for the simulated data.  

5. Compare the distributions of t(α) from the simulated data to that of actual data to draw 

inferences about the existence of superior signals. In particular, we compute the bootstrapped p-

value as the % of simulation runs in which the t(α) estimate is higher than that of the actual data 

for each given cross-sectional percentile.  

Because a simulation run is the same random sample of months for all fundamental signals, 

our simulations preserve the cross correlation of long-short returns and its effects on the 

distribution of t(α) estimates. This is important because the focus of our study is to examine cross-

sectional return anomalies. There is an issue, however. If a fundamental signal is not in the sample 

for the entire 1963-2013 period, then the number of months in the simulated sample may be 

different from that in the actual sample. Fama and French (2010) point out that the distribution of 

t(α) estimates depends on the number of months in a simulation run through a degree of freedom 

effect. In particular, the distributions of t(α) estimates that are oversampled (undersampled) in a 

simulation run will exhibit thinner (thicker) extreme tails than the distributions of t(α) for the actual 

returns. The oversampling and undersampling of long-short returns, however, should roughly 

offset each other both within a simulation and across the 1,000 simulation runs. 
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3. Empirical Results 

3.1. Main Results 

We report our main bootstrap results in Table 3 and Table 4. To draw inferences, we 

compare the cross-sectional distribution of t-statistics in the actual data with that in the simulated 

data. As stated in the previous section, the simulated data have a true alpha of zero by construction. 

However, a positive (negative) alpha may still arise because of sampling variation. If we find that 

very few of the bootstrap iterations generate t(α) that is as large as those in the actual data, this 

would indicate that sampling variation is not the source of the superior performance.  

We begin our analysis with raw long-short returns (Table 3). Because we are interested in 

whether the performance of the best-performing signals is due to data mining, we focus on the 

extreme percentiles of the cross-sectional distribution. Specifically, we report the results for every 

percentile from the 95th to 100th. We also report the results for every decile from the 50th to 90th 

percentiles.12  

For each cross-sectional percentile, we report four statistics, i.e., “Actual”, “%Sim>Act”, 

“P95”, and “P99”. The column “Actual” contains the t-statistics for the actual data. The column 

“%Sim>Act” reports the percentage of simulation runs in which the t-statistics in the simulated 

data is greater than the t-statistics in the actual data. This column also represents the bootstrapped 

p-value. Finally, the columns “P95” and “P99” are the 5% and 1% critical values of t-statistics, 

i.e., the 95th and 99th percentiles of the simulated t-statistics. If the actual t-statistics is greater than 

P95 (P99), then we can conclude that the actual t-statistics is statistically significant at the 5 (1) 

percent level. 

                                                 
12 We focus on the right tail of the distribution because we take the absolute value of t-statistics (See Section 2.3). 
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 Looking at the equal-weighted results reported in the left panel of Table 3, we find that the 

long-short returns of fundamental-based trading strategies exhibit large t-statistics. For example, 

the 99th percentile of t-statistics is 7.06 and the 95th percentile is 4.88. To assess whether we would 

expect such extreme t-statistics under the null hypothesis of no predicative ability, we compare 

them with the cross-sectional distribution of the simulated t-statistics. We find that the 

bootstrapped p-values for all extreme percentiles are uniformly 0%, i.e., none of the 1,000 

simulations produce a t-statistics that is larger than the corresponding t-statistics in the actual 

data.13 These results indicate that the large actual t-statistics at the extreme percentiles cannot be 

explained by sampling variation alone. 

 The right panel of Table 3 reports the value-weighted results. We find that the actual t-

statistics for value-weighted returns are much lower than their equal-weighted counterparts. For 

example, the 99th (95th) percentile of t-statistics is “only” 3.63 (2.58), compared to 7.06 (4.88) for 

equal-weighted returns. Nevertheless, the inference about the extreme percentiles of t-statistics 

remain the same for value-weighted returns; that is, we find that the bootstrapped p-values are less 

than 5% for all the extreme percentiles. For example, the bootstrapped p-value for the 95th 

percentile of t-statistics is 0.7%. This means that, by randomly sampling under the null hypothesis 

that all strategies are generating zero long-short returns, the chance for us to observe a 95th 

percentile of t-statistics that is at least 2.58 is only 0.7%. We therefore reject the null. Overall, the 

evidence in Table 3 suggests that the superior performance of top-ranked signals is unlikely to be 

attributed to random chance. 

                                                 
13 We note that the bootstrapped p-values are less than 1% for the 50th through 80th percentiles as well. This result 
arises because, as a group, fundamental signals contain valuable information about future stock returns. We purged 
this information from the simulated data (i.e., we set the true alpha to zero) in order to focus on sampling variation. 
As a result, the actual t-statistics tend to be larger than their simulation counterparts at all percentiles. Following the 
previous literature, our discussion focuses on extreme percentiles only. 
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Next, we present the results for the t-statistics of alphas. Panel A of Table 4 reports the 

results for the 1-factor alpha. We continue to find that fundamental-based trading strategies exhibit 

large t-statistics. For example, the 99th percentile of t-statistics for equal-weighted 1-factor alphas 

is 7.72 and the 95th percentile of t-statistics is 5.43. The bootstrapped p-values for the extreme 

percentiles of t-statistics are uniformly 0%. The results for value-weighted returns are qualitatively 

similar. The 99th percentile of t-statistics is 4.25 and the 95th percentile of t-statistics is 3.02. While 

these t-statistics are lower than their equal-weighted counterparts, they are much larger than those 

in the simulated data.   

 Because the HML factor in the Fama and French (1996) 3-factor model is constructed using 

financial statement information, one might expect the predictive ability of fundamental signals to 

weaken after we control for the HML factor. Results reported in Panel B indicate that this is not 

the case. The extreme percentiles of 3-factor alpha t-statistics are similar to those of 1-factor alpha 

t-statistics. More importantly, we continue to find that the large t-statistics at the extreme 

percentiles cannot be explained by sampling variation. 

 The 4-factor results reported in Panel C paint a similar picture. We note that the magnitudes 

of the 4-factor alpha t-statistics are slightly lower than those in Panels A and B. For example, the 

99th percentile of t-statistics is 6.28 for equal-weighted returns and 3.29 for value-weighted returns, 

while the corresponding numbers for 3-factor alphas are 7.13 and 3.95, respectively. Nevertheless, 

the bootstrapped p-values for the extreme percentiles of 4-factor alpha t-statistics are all less than 

5%, so our inferences are unchanged.  

We can also illustrate our findings graphically. Figure 1 plots the probability density 

distribution of the bootstrapped 99th, 95th, and 90th percentiles of 4-factor alpha t-statistics. It also 

plots the actual t-statistics as a vertical line. These graphs show that the actual t-statistics are much 



18 
 

larger when compared to their bootstrapped counterparts, confirming that they are unlikely to be 

driven by random chance. Moreover, the distributions of bootstrapped t-statistics are highly non-

normal. In particular, each graph exhibits a significant positive skewness. As a result, the inference 

from the conventional tests under the normality assumptions can be misleading.   

We also plot the cumulative distribution function (CDF) of t(α) estimates for both the actual 

data and the simulated data. Panel A of Figure 2 shows the CDF for equal-weighted returns while 

Panel B shows the CDF for value-weighted returns. In both graphs, the actual CDF is significantly 

below that of the simulated data, which indicates that the right tail of the actual t-statistics is much 

thicker than that of the simulated data. This result again shows that the performance of top signals 

is not due to sampling variation. 

 

3.2. Comparisons with Standard Multiple-testing Methods 

In addition to the bootstrap approach, the literature has proposed several alternative tests 

to address the multiple-testing issue. In this section, we implement several of these tests to examine 

whether they lead to different inferences from that of the bootstrap approach. We follow HLZ 

(2015) and consider the following three tests: (1) Bonferroni; (2) Holm; and (3) Benjamini, 

Hochberg, and Yekutieli (BHY). Bonferroni’s adjustment for multiple testing is the simplest, in 

which the original p-value is multiplied by the total number of tests. Holm’s adjustment is a 

refinement of Bonferoni but involves ordering of p-values and thus depends on the entire 

distribution of p-values. BHY aim to control the false discovery rate and also depends on the 

distribution of p-values. For brevity, we refer the readers to HLZ for a detailed discussion of these 

tests.  
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The above-mentioned multiple testing methods assume that the outcomes of all tests are 

observed. In reality, however, significant factors are more likely to be published than insignificant 

ones, thus creating a problem in applying these three tests. This is not an issue in our context, as 

we assume all the factors tried and considered by researchers are in the universe that we 

constructed. Therefore, we can easily implement the Bonferroni, Holm, and BHY tests for our 

sample of fundamental signals.  

Table 5 reports the results. For brevity, we report the results for 4-factor alphas only.14 In 

Panel A, we consider the significance level of 5 percent. The cutoff t-values for the Bonferroni test 

is 4.58 for equal-weighted returns. Based on this cutoff value, 4.33% of our 18,113 signals are 

significant. The cutoff t-values for the Holm test is identical to that of the Bonferroni test. 

Compared with the Bonferroni and Holm tests, the BHY test is much less stringent with a t-

statistics cutoff value of 3.24.  

The cutoff t-values for value-weighted returns are similar to those for equal-weighted 

returns. However, because the actual t-statistics for value-weighted returns are much lower, the 

percentage of significant signals are also significantly lower. In fact, no more than 0.02% of the 

signals are significant under either of Bonferroni, Holm, and BHY tests when we use value-

weighted returns. This finding is in sharp contrast to our bootstrap results. Using a bootstrap 

approach, we show in Tables 3 and 4 that a large number of signals exhibit significant value-

weighted long-short performance after accounting for sampling variation. There are two reasons 

for this difference. First, standard multiple-testing procedures are known to be too stringent, 

especially the Bonferroni procedure, which assumes all tests are independent. Second, standard 

                                                 
14 The results for raw returns and 1- and 3-factor alphas are qualitatively similar. 
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tests do not take into account the exact nature and magnitude of the cross-sectional dependencies 

in the data, and therefore may lead to false inferences. 

Panel B presents the results for the significance level of 1 percent. As expected, the cutoff 

t-values are much higher than those in Panel A. Nevertheless, a large number of fundamental 

signals exhibit significant long-short performance when looking at equal-weighted returns. This 

inference is similar to that of our bootstrap analysis. However, when we look at the value-weighted 

returns, the percentage of significant signals is only 0.01%, 0.01%, and 0% for the Bonferroni, 

Holm, and BHY tests, respectively. This finding is once again dramatically different from our 

bootstrap analysis. 

 

3.3. Sub-periods 

3.3.1. Bootstrap Results 

We divide our sample period into two halves of roughly equal length (1963-1987 and 1988-

2013) and examine the predictive ability of fundamental signals in both sub-periods. Table 6 

presents the results. We report two primary findings. First, the predictive ability of fundamental 

signals is evident in both sub-periods. All the extreme percentiles of t-statistics have a bootstrapped 

p-value of 5% or lower except the 100th percentile of value-weighted returns. Second, there is no 

evidence that, as a whole, the predictive ability of fundamental signals has attenuated from the first 

half of our sample period to the second half. For example, the 99th percentile of t-statistics is 5.03 

(3.19) for equal-weighted (value-weighted) returns during 1963-1987, and is 5.34 (3.17) during 

the second half. The 95th percentiles show a similar pattern. If anything, the t-statistics are slightly 

higher in the second half of the sample period. 
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3.3.2. Transition Matrix 

 Having examined the predictive ability of fundamental signals during each of the two sub-

periods, we next examine the persistence of the performance of individual signals. This analysis 

is important because previous studies (e.g., Sullivan, Timmermann, and White (2001)) suggest 

that the analysis of sub-period stability is a remedy against data mining.  

To measure stability, we construct a transition matrix for the t-statistics between 1963-

1987 and 1988-2013. Specifically, we sort signals into quintiles based on their t-statistics during 

each sub-period and report the percentage of signals in a given quintile during the first half of the 

sample period moved to a particular quintile in the second half. If the predictive ability of 

fundamental signals is due to chance, then we should expect all numbers in the transition matrix 

to be around 20%. On the other hand, if the predictive ability is real and stable, then we should 

expect the diagonal terms of the transition matrix (particularly the two corners) to be significantly 

greater than 20%. In this analysis, we do not take the absolute value of the t-statistics (e.g., the 

sign of the t-statistics for the asset growth anomaly stays negative), as changing from an extreme 

positive t-statistics to an extreme negative t-statistics or vice versa should be interpreted as unstable 

rather than stable.  

 Panel A of Table 7 reports the results. Focusing on equal-weighted returns in the left panel, 

we find strong evidence of cross-period stability. More than 50% of the signals ranked in the 

bottom quintile during the first half of the sample period continue to be ranked in the bottom 

quintile during the second half, while less than 8% of these signals move to the top quintile. 

Similarly, more than 30% of the signals ranked in the top quintile continue to stay in the same 

quintile during the second half of the sample period, while only 3.1% of the signals switch to the 
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bottom quintile. Unreported tests indicate that these percentages are significantly different from 

20% (the unconditional average). The results for value-weighted returns are qualitatively similar.  

3.3.3. Performance Persistence 

 Another way to evaluate whether the predictive ability of fundamental signals is stable is 

to look at the performance persistence of fundamental-based trading strategies. This is a common 

approach in the mutual fund and hedge fund literature to separate skill from luck. As in our 

previous analysis, we divide our sample period into two halves. We estimate the alpha for each 

signal during the first half of our sample period. We then sort all signals into decile portfolios 

based on the t-statistics of the estimated alpha. We form equal-weighted portfolios of these 

anomalies and hold the portfolios during the second half of our sample period. We report the 

performance of the two extreme deciles as well as their difference in Panel B of Table 7. As in the 

previous section, we do not take the absolute value of either alphas or t-statistics.  

We find strong evidence of performance persistence. Looking at the equal-weighted raw 

returns, we find that those signals ranked in the bottom decile (D1) during the first half of our 

sample period continue to exhibit a negative and significant long-short return of -0.43% per month 

during the second half. In contrast, those signals ranked in the top decile (D10) during the first half 

of our sample period exhibit a positive and significant long-short return of 0.17% per month during 

the second half. The difference between D10 and D1 is 0.6% per month and highly statistically 

significant. The result is robust whether we use 1-, 3-, or 4-factor alphas and whether we examine 

equal-weighted or value-weighted long-short returns. The difference between D10 and D1 is 

economically meaningful and statistically significant across all specifications.  

Overall, our analysis of the performance of fundamental-based trading rules across sub-

periods provides further evidence that the predictive ability of fundamental signals is unlikely to 
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be driven by data mining. It also suggests that investors could have adopted a recursive decision 

rule to identify the best performing signals and have used this information to produce genuinely 

superior out-of-sample performance.  

 

3.4. Evidence on Behavioral Explanations 

 We have shown that the observed performance of top-ranked signals is unlikely to be a 

result of data mining. In this section, we investigate whether fundamental-based anomalies are 

consistent with mispricing-based explanations. In particular, we hypothesize that financial 

statement variables contain valuable information about future firm performance, but the market 

fails to incorporate this information into stock prices in a timely manner. We perform three tests. 

We first examine long-short returns by firm characteristics. We then investigate the relation 

between long-short returns and investor sentiment. Finally, we measure the extent to which the 

long-short returns of fundamental-based strategies are concentrated around earnings 

announcement periods. 

3.4.1. By Firm Characteristics 

In this section, we partition our sample by size, idiosyncratic volatility, institutional 

ownership, and analyst coverage and then repeat our analysis for each sub-group of stocks. Our 

analysis has two specific objectives. First, we want to examine if our main results are robust across 

all sub-samples of stocks, e.g., small and large stocks. This analysis is important because if the 

results only hold for small stocks and not for large stocks, then the economic significance of our 

results will be limited. Second, behavioral arguments suggest that if anomaly returns are due to 

mispricing, then the predictability should be more pronounced among stocks that are more costly 
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to trade, held by unsophisticated investors, have larger arbitrage risk, and covered by fewer 

analysts. Our second objective is to test this prediction. 

 We perform double sorts. We divide our sample stocks into two portfolios by each firm 

characteristic, and then independently sort the sample into deciles based on each fundamental 

signal. We conduct our bootstrap analysis for each sub-group of stocks. For each firm 

characteristic, we also test for the difference in the cross-sectional percentile of t-statistics between 

the two sub-groups of stocks, e.g., small versus large stocks. 

 Panel A of Table 8 presents the results for firm size. Small stocks typically have higher 

transactions costs, greater information asymmetry, and more limited arbitrage. If the abnormal 

returns to fundamental-based trading strategies represent mispricing, then we would expect the 

predictive ability to be stronger among small stocks. We find evidence consistent with this 

prediction. For example, the 99th percentile of t-statistics for equal-weighted returns is 6.22 for 

small stocks, and only 3.18 for large stocks. The difference of 3.04 in t-statistics is highly 

statistically significant.15 Similarly, the 95th percentile of t-statistics is 4.42 for small stocks and 

2.39 for large stocks, and the difference of 2.03 is also statistically significant. These results 

suggest that the predictive ability of fundamental signals is significantly stronger among small 

stocks. In spite of the large difference between small and large stocks, our main results hold for 

both small and large stocks. In particular, the bootstrapped p-values associated with extreme 

percentiles are uniformly zero for small stocks and less than 5% for large stocks except for the 

100th percentile. The value-weighted results presented in the right panel paint a similar picture. 

Overall, our main finding is robust across small and large stocks, and more importantly, the 

predictive ability of top-ranked fundamental signals is more pronounced among small stocks.  

                                                 
15 We test for the difference between small and large stocks by using the standard deviation of the difference in 1,000 
simulations as the standard error. 
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Panel B reports the results for idiosyncratic volatility (IVOL). Previous literature (e.g., 

Shleifer and Vishny (1997) and Pontiff (2006)) suggest that IVOL is a primary limit to arbitrage. 

To the extent that the predictive power of fundamental signals reflect market inefficiency, we 

expect the results to be more pronounced among high-IVOL stocks. Results in Panel B reveal 

strong evidence that the t-statistics for equal-weighted returns are significantly higher among high-

IVOL stocks than low-IVOL stocks. For example, the 95th percentile of t-statistics is 4.44 for high-

IVOL stocks and only 3.14 for low-IVOL stocks. The difference is statistically significant. For 

value-weighted returns, the t-statistics are higher for high-IVOL stocks, but the difference is 

insignificant.16 

Panel C presents the results for institutional ownership (IO). Institutional investors are 

more sophisticated and better informed than individual investors. To the extent that the predictive 

ability of financial statement variables represent misreaction to public information by uninformed 

investors, we would expect this predictability to be stronger among low-institutional ownership 

stocks. Our results confirm this conjecture. For equal-weighed returns, we find large and 

statistically significant differences in t-statistics between high- and low-IO stocks. For example, 

the 99th percentile of t-statistics is 6.07 for low-IO stocks and 3.82 for high-IO stocks. The value-

weighted results are lower in magnitudes but qualitatively similar.  

In our final firm characteristic analysis, we focus on analyst coverage. Financial analysts 

play an important role in interpreting and disseminating financial information. If the predictive 

ability of fundamental signals is due to market failing to fully incorporate public financial 

statement information, we would expect this predictability to be attenuated among stocks with 

                                                 
16 There are two reasons for the lack of significant difference when we use value-weighted returns. First, large stocks 
carry more weights in value-weighted returns and the marginal impact of IVOL is smaller among large stocks. Second, 
due to data constraints we only partition our sample into two portfolios based on IVOL, which makes it difficult to 
find a significant difference between high- and low-IVOL stocks. 
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more extensive analyst coverage. Results contained in Panel D of Table 8 lend support to this 

prediction. We find statistically significant difference in t-statistics between low- and high-analyst 

coverage stocks, whether we examine equal-weighted returns or value-weighted returns.17 

Overall, our main findings hold for all sub-groups of stocks, suggesting they are not solely 

attributed to small, neglected stocks, which comprise only a small percentage of the entire stock 

market based on market capitalization. Consistent with behavioral explanations, we find that the 

predictive ability of fundamental signals are stronger among small stocks and stocks with higher 

idiosyncratic volatility, lower institutional ownership, and fewer analysts.  

3.4.2. Investor Sentiment 

 To the extent that stock return anomalies are driven by mispricing, overpricing should be 

more prevalent than underpricing because shorting is more costly. As a consequence, anomaly 

returns should be significantly higher following high-sentiment periods than low sentiment periods 

(Stambaugh, Yuan, and Yu (2012)). Examining thirteen well-documented anomalies, Stambaugh, 

Yuan, and Yu find evidence consistent with this prediction.  

 We test the above prediction using our sample of fundamental signals. We obtain the 

investor sentiment index of Baker and Wurgler (2006) from Jeffrey Wurgler’s website. Following 

Stambaugh, Yuan, and Yu (2012), we divide our sample into high- and low-sentiment periods 

based on the median sentiment index level. We then compute anomaly returns separately for the 

periods following high and low sentiment levels. We perform this analysis for the top 10, 5, and 1 

percent of fundamental signals (ranked based on the t-statistics of 4-factor alphas). 

                                                 
17 IVOL, IO, and the number of analysts are correlated with size. As such, the cross-sectional impact of IVOL, IO, 
and analyst coverage may simply be a manifestation of the effect of size. To mitigate this concern, we perform a triple 
sort, and repeat our analysis by using size-stratified IVOL, IO, and analyst coverage. We find that our results are 
similar in this alternative test, suggesting that IVOL, IO, and analyst coverage has an incremental impact on 
fundamental-based anomalies. 
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 Table 9 presents the results. We find that the long-short returns of top-ranked fundamental 

signals are significantly higher following high-sentiment periods than following low-sentiment 

periods. For example, the average long-short return for the top 10 percent signals is 0.56% per 

month following high-sentiment periods, and 0.36% per month following low-sentiment period. 

The difference of 0.2% is statistically significant with a t-statistics of 3.15. The results for the top 

5% and 1% signals are qualitatively similar and quantitatively higher. The difference in long-short 

returns is 0.22% and 0.26% for the top 5% and top 1% of signals, respectively, both statistically 

significant. The value-weighted results are more pronounced than equal-weighted results. For 

example, the average anomaly return among the top 1% signals is 0.88% per month following 

high-sentiment periods, and only 0.35% per month following low-sentiment periods. The 

difference of 0.53% per month economically and statistically significant. Overall, our finding 

strongly supports the mispricing-based explanations. 

3.4.3. Earnings Announcements 

 Next, we investigate the extent to which the long-short returns of top signals are 

concentrated around subsequent earnings announcements. This test follows La Porta et al. (1997) 

and Bernard, Thomas, and Wahlen (1997) and is based on the following argument. According to 

mispricing-based explanations of anomalies, predictable stock returns arise from corrections of 

mispricing. If a stock is mispriced, then price corrections will more likely occur around subsequent 

information releases when investors update their prior beliefs. Earnings information is arguably 

the most important piece of information for publicly traded firms; therefore, a disproportionate 

amount of abnormal returns should occur around future earnings announcements. 

We compute earnings announcement return (EAR) during the three-day periods around 

each announcement date. We then sum up the EAR over the subsequent four quarterly 
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announcements for each firm. For each fundamental signal in our sample, we compute the average 

EAR separately for firms in the long and short portfolios and then compute the difference in EAR 

between the long and short portfolios. Table 10 reports the results. For comparison, we also report 

the total long-short return over the entire 12-month holding period. As in the previous analysis, we 

focus on the top 1, 5, and 10 percent of signals sorted on 4-factor alpha t-statistics. 

Looking at equal-weighted returns, we find that the average EAR is statistically significant. 

Moreover, the EAR represents about 18% of the total long-short hedge returns. For example, 

among the top 1% signals ranked by four-factor alpha t-statistics, the average total long-short 

return is 8.55% per year. The average difference in EAR between long and short portfolios is 

1.54% during the four quarterly earnings announcement periods. Since earnings announcement 

periods comprise less than 5% of total number of trading days (12 out of 252), the above result 

suggests that the long-short return is almost three times higher during earnings announcement 

periods when compared to non-announcement periods.18 The value-weighted results show a lower 

percentage (12-13%) of total long-short return accrued during earnings announcement periods. 

Nonetheless, we still find that the long-short returns are significantly higher during earnings 

announcements periods than other periods. Overall, our evidence is consistent with behavioral 

explanations and suggests that fundamental-based anomalies at least partly result from investor 

expectation errors. 

 

3.5. Robustness Tests 

We have already shown that our main findings are robust to alternative portfolio weighting 

schemes and alternative risk-adjustment models, and they hold in both halves of our sample period 

                                                 
18 These percentages are likely understated because of the post-earnings-announcement drift. 
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and among sub-groups of stocks sorted by various firm characteristics. In this section, we perform 

a number of additional robustness tests to further ensure that our results are not sensitive to our 

methodological choices.  

3.5.1. Bootstrap Alphas 

In this section, we apply the bootstrap procedure to alphas instead of t-statistics. Recall that 

we focus on t-statistics in our main analysis because t-statistics has better sampling properties. In 

particular, t-statistics is less prone to the extreme outlier problem. Nevertheless, it is informative 

to examine the magnitude of the abnormal performance by looking at alphas. Table 11 summarizes 

the results. The structure of this table is identical to that of Tables 3 and 4 except that the numbers 

reported in Table 11 are alphas rather than t-statistics.  The results show that the extreme deciles 

of alphas are large and not attributable to sampling variation. For example, the 99th percentile of 

equal-weighted 1-factor alphas is 1.1% per month and this number is greater than its counterparts 

in all but 1.2% of the simulation runs. The maximum alpha, i.e., the 100th percentile is generally 

insignificant in part because of the outlier problem. However, the other extreme percentiles are 

generally significant. Overall, despite the relatively poor sampling properties of alpha estimates, 

we find evidence that the extreme alphas of the best performing signals are not due to sampling 

variation. 

3.5.2. Industry-adjusted Ratios 

One might argue that financial ratios are industry specific, so it may be more meaningful 

to compare a company’s financial ratios to its industry peers. In an untabulated robustness test, we 

subtract the industry median from each firm’s fundamental signal before forming portfolios. We 

find essentially the same results when we use industry-adjusted ratios. In some cases, the results 

are slightly better, confirming that industry-adjustment does provide incremental information.  
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3.5.3. Alternative Universe of Signals 

A key innovation of our paper is to construct a universe of fundamental signals using 

permutational arguments. In doing so, we have to make choices on the list of accounting variables 

and financial ratios. To ensure robustness of our findings, we repeat our analyses on several 

alternative universe of fundamental signals. In particular, we find that our results are qualitatively 

identical when we impose more (or less) stringent data requirements on the accounting variables 

(e.g., require a minimum of 2,000 average observations per year as opposed to 1,000). We also 

find that our results are not driven by any specific base variables or specific signals we use. For 

example, our results are qualitatively identical when we consider only those signals that are scaled 

by total assets or total sales. These results are not tabulated in the paper but are available upon 

request. 

3.5.4. Number of Simulation Runs 

Throughout the paper, we perform 1,000 simulations in our bootstrap analysis. To gauge 

robustness, we increase the number of simulation runs to 10,000 and repeat our main analysis in 

Table 4. We perform this robustness test only for Table 4 because of high computational cost. 

Untabulated results indicate that the results in Table 4 are essentially unchanged when we use 

10,000 simulations. Moreover, the results hold for each of the ten 1,000-simulation subsets.  

 

4. Conclusions 

Previous studies have documented hundreds of cross-sectional return anomalies. These 

findings have largely been considered without accounting for the extensive search preceding them. 

In this paper, we evaluate the data-mining bias in cross-sectional return anomalies by examining 

an important class of anomaly variables, i.e., fundamental signals derived from financial 
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statements, and by using a bootstrap approach. We use permutational arguments to construct a 

“universe” of over 18,000 fundamental signals from financial statements. We find that a large 

number of fundamental signals are significant predictors of cross-sectional stock returns even after 

accounting for data mining. This predictive ability is more pronounced among small, low-

institutional ownership, low-analyst coverage, and high-idiosyncratic volatility stocks, providing 

support for the behavioral explanations of fundamental-based anomalies. We also find that the 

long-short returns associated with fundamental signals are disproportionately concentrated around 

subsequent earnings announcements and are significantly higher following high-sentiment 

periods. This evidence suggests that fundamental-based anomalies are more likely to result from 

mispricing and expectation errors. The long-short returns of the best performing signals exhibit 

strong persistence across sub-periods, providing further evidence against data mining. Our 

evidence suggests that fundamental-based anomalies are not a product of data mining and they are 

more likely to reflect mispricing. Although we focus only on financial statement variables in this 

paper, our approach is general and can be applied to other categories of anomaly variables such as 

macroeconomic variables. 
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Figure 1. Probability Density Functions (PDF) of Selected Cross-Sectional Percentiles 
 
Figure 1 plots the probability density functions of simulated t-statistics of long-short hedge returns based on 18,113 
fundamental signals. Our sample period is 1963-2013. The list of 240 accounting variables and 76 financial ratios and 
configurations are given in Table 1 and Table 2, respectively. At the end of June of year t, we form decile portfolios 
based on the value of each fundamental signal in year t-1. We form the long-short portfolio based on the two extreme 
decile portfolios and hold them for 12 months. We choose long and short portfolios such that the average long-short 
hedge return is positive. A simulation run is a random sample of 606 months, drawn (with replacement) from the 606 
calendar months between July 1963 and December 2013. We estimate 4-factor alphas based on the Carhart (1997) 
model. Actual t-statistics are the dashed line (red) and the bootstrapped t-statistics are the solid line (blue). 
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Figure 2. Cumulative Distribution Function (CDF) 
 
Figure 2 plots the cumulative distribution functions of simulated t-statistics of long-short hedge returns based on 
18,113 fundamental signals. Our sample period is 1963-2013. The list of 240 accounting variables and 76 financial 
ratios and configurations are given in Table 1 and Table 2, respectively. At the end of June of year t, we form decile 
portfolios based on the value of each fundamental signal in year t-1. We form the long-short portfolio based on the 
two extreme decile portfolios and hold them for 12 months. We choose long and short portfolios such that the average 
long-short hedge return is positive. A simulation run is a random sample of 606 months, drawn (with replacement) 
from the 606 calendar months between July 1963 and December 2013. We estimate 4-factor alphas based on the 
Carhart (1997) model. Actual t-statistics are the dashed line (red) and the bootstrapped t-statistics are the solid line 
(blue). The dotted lines give 95% confidence intervals of the bootstrapped distribution. 
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Table 1 
List of Accounting Variables 
 
Table 1 lists the 240 accounting variables used in this study and their descriptions. Our sample period is 1963-2013. We begin with all accounting variables on the 
balance sheet, income statement, and cash flow statement included in the annual Compustat database. We exclude all variables with fewer than 20 years of data or 
fewer than 1,000 firms with non-missing data on average per year. We exclude per-share based variables such as book value per share and earnings per share. We 
remove LSE (total liabilities and equity), REVT (total revenue), OIBDP (operating income before depreciation), XDP (depreciation expense) because they are 
identical to TA (total assets), SALE (total sale), EBITDA (earnings before interest) and DFXA (depreciation of tangible fixed assets) respectively.  
 

# Variable Description # Variable Description 
1 ACCHG Accounting changes–cumulative effect 29 COGS Cost of goods sold 
2 ACO Current assets other total 30 CSTK Common/ordinary stock (capital) 
3 ACOX Current assets other sundry 31 CSTKCV Common stock-carrying value 
4 ACT Current assets- total 32 CSTKE Common stock equivalents – dollar savings 
5 AM Amortization of intangibles 33 DC Deferred charges 
6 AO Assets – other 34 DCLO Debt capitalized lease obligations 
7 AOLOCH Assets and liabilities other net change 35 DCOM Deferred compensation 
8 AOX Assets – other - sundry 36 DCPSTK Convertible debt and stock 
9 AP Accounts payable – trade 37 DCVSR Debt senior convertible 
10 APALCH Accounts payable & accrued liabilities increase/decrease 38 DCVSUB Debt subordinated convertible 
11 AQC Acquisitions 39 DCVT Debt – convertible 
12 AQI Acquisitions income contribution 40 DD Debt debentures 
13 AQS Acquisitions sales contribution 41 DD1 Long-term debt due in one year 
14 AT Assets – total 42 DD2 Debt Due in 2nd Year 
15 BAST Average short-term borrowing 43 DD3 Debt Due in 3rd Year 
16 CAPS Capital surplus/Share premium reserve 44 DD4 Debt Due in 4th Year 
17 CAPX Capital expenditure 45 DD5 Debt Due in 5th Year 
18 CAPXV Capital expenditure PPE Schedule V 46 DFS Debt finance subsidiary 
19 CEQ Common/ordinary equity - total 47 DFXA Depreciation of tangible fixed assets 
20 CEQL Common equity liquidation value 48 DILADJ Dilution adjustment 
21 CEQT Common equity tangible 49 DILAVX Dilution available excluding extraordinary items 
22 CH Cash 50 DLC Debt in current liabilities - total 
23 CHE Cash and short-term investments 51 DLCCH Current debt changes 
24 CHECH Cash and cash equivalents increase/(decrease) 52 DLTIS Long-term debt issuance 
25 CLD2 Capitalized leases - due in 2nd year 53 DLTO Other long-term debt 
26 CLD3 Capitalized leases - due in 3rdyear 54 DLTP Long-term debt tied to prime 
27 CLD4 Capitalized leases - due in 4thyear 55 DLTR Long-term debt reduction 
28 CLD5 Capitalized leases - due in 5thyear 56 DLTT Long-term debt - total 
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# Variable Description # Variable Description 
57 DM Debt mortgages &other secured 91 FATL Property, plant, and equipment leases 
58 DN Debt notes 92 FATN Property, plant, equipment and natural resources 
59 DO Income (loss) from discontinued operations 93 FATO Property, plant, and equipment other  
60 DONR Nonrecurring discontinued operations 94 FATP Property, plant, equipment and land improvements  
61 DP Depreciation and amortization 95 FIAO Financing activities other 
62 DPACT Depreciation , depletion and amortization  96 FINCF Financing activities net cash flow 
63 DPC Depreciation and amortization (cash flow) 97 FOPO Funds from operations other 
64 DPVIEB Depreciation ending balance (schedule VI) 98 FOPOX Funds from operations - Other excl option tax benefit 
65 DPVIO Depreciation  other changes (schedule VI) 99 FOPT Funds from operations total 
66 DPVIR Depreciation retirements (schedule VI) 100 FSRCO Sources of funds other 
67 DRC Deferred revenue current 101 FSRCT Sources of funds total 
68 DS Debt-subordinated 102 FUSEO Uses of funds other 
69 DUDD Debt unamortized debt discount and other 103 FUSET Uses of funds total 
70 DV Cash dividends (cash flow) 104 GDWL Goodwill 
71 DVC Dividends common/ordinary 105 GP Gross profit (loss) 
72 DVP Dividends - preferred/preference 106 IB Income before extraordinary items 
73 DVPA Preferred dividends in arrears 107 IBADJ IB adjusted for common stock equivalents 
74 DVPIBB Depreciation beginning balance (schedule VI) 108 IBC Income before extraordinary items (cash flow) 
75 DVT Dividends - total 109 IBCOM Income before extraordinary items available for common 
76 DXD2 Debt (excl capitalized leases) due in 2nd year 110 ICAPT Invested capital – total 
77 DXD3 Debt (excl capitalized leases) due in 3rd year 111 IDIT Interest and related income - total 
78 DXD4 Debt (excl capitalized leases) due in 4thyear 112 INTAN Intangible assets – total 
79 DXD5 Debt (excl capitalized leases) due in 5thyear 113 INTC Interest capitalized 
80 EBIT Earnings before interest and taxes 114 INTPN Interest paid net 
81 EBITDA Earnings before interest 115 INVCH Inventory decrease (increase) 
82 ESOPCT ESOP obligation (common) - total 116 INVFG Inventories finished goods 
83 ESOPDLT ESOP debt - long term 117 INVO Inventories other 
84 ESOPT Preferred ESOP obligation - total 118 INVRM Inventories raw materials 
85 ESUB Equity in earnings -unconsolidated subsidiaries 119 INVT Inventories – total 
86 ESUBC Equity in net loss earnings 120 INVWIP Inventories work in progress 
87 EXRE Exchange rate effect 121 ITCB Investment tax credit (balance sheet) 
88 FATB Property, plant, and equipment buildings 122 ITCI Investment tax credit (income account) 
89 FATC Property, plant and equipment construction in progress  123 IVACO Investing activities other 
90 FATE Property, plant, equipment and machinery equipment  124 IVAEQ Investment and advances – equity 
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# Variable Description # Variable Description 
125 IVAO Investment and advances other 160 PPENC Property plant equipment construction in progress (net) 
126 IVCH Increase in investments 161 PPENLI Property plant equipment land and improvements (net) 
127 IVNCF Investing activities net cash flow 162 PPENME Property plant equipment machinery and equipment (net) 
128 IVST Short-term investments – total 163 PPENNR Property plant equipment natural resources (net) 
129 IVSTCH Short-term investments change 164 PPENO Property plant and equipment other (net) 
130 LCO Current liabilities other total 165 PPENT Property, plant, and equipment – total (net) 
131 LCOX Current liabilities other sundry 166 PPEVBB Property plant equipment beginning balance (schedule V) 
132 LCOXDR Current liabilities-other-excl deferred revenue 167 PPEVEB Property, plant, and equipment ending balance 
133 LCT Current liabilities – total 168 PPEVO Property, plant, and equipment other changes (schedule V) 
134 LIFR LIFO reserve 169 PPEVR Property, plant and equipment retirements (schedule V) 
135 LO Liabilities – other – total 170 PRSTKC Purchase of common and preferred stock 
136 LT Liabilities – total 171 PSTK Preferred/preference stock (capital) – total 
137 MIB Minority interest (balance sheet) 172 PSTKC Preferred stock convertible 
138 MII Minority interest (income account) 173 PSTKL Preferred stock liquidating value 
139 MRC1 Rental commitments minimum 1styear 174 PSTKN Preferred/preference stock – non-redeemable 
140 MRC2 Rental commitments minimum 2ndyear 175 PSTKR Preferred/preference stock - redeemable 
141 MRC3 Rental commitments minimum 3rdyear 176 PSTKRV Preferred stock redemption value 
142 MRC4 Rental commitments minimum 4th year 177 RDIP In process R&D expense 
143 MRC5 Rental commitments minimum 5th year 178 RE Retained earnings 
144 MRCT Rental commitments minimum 5 year total 179 REA Retained earnings restatement 
145 MSA Marketable securities adjustment 180 REAJO Retained earnings other adjustments 
146 NI Net income (loss) 181 RECCH Accounts receivable decrease (increase) 
147 NIADJ Net income adjusted for common stock equiv. 182 RECCO Receivables – current – other 
148 NIECI Net income effect capitalized interest 183 RECD Receivables – estimated doubtful 
149 NOPI Non-operating income (expense) 184 RECT Receivables – total 
150 NOPIO Non-operating income (expense) other 185 RECTA Retained earnings cumulative translation adjustment 
151 NP Notes payable short-term borrowings 186 RECTR Receivables – trade 
152 OANCF Operating activities net cash flow 187 REUNA Retained earnings unadjusted 
153 OB Order backlog 188 SALE Sales/turnover (net) 
154 OIADP Operating income after depreciation 189 SEQ Stockholders’ equity – total 
155 PI Pre-tax income 190 SIV Sale of investments 
156 PIDOM Pretax income domestic 191 SPI Special items 
157 PIFO Pretax income foreign 192 SPPE Sale of property 
158 PPEGT Property, plant, and equipment – total (gross) 193 SPPIV Sale of property plant equipment investments gain (loss) 
159 PPENB Property, plant, and equipment buildings (net) 194 SSTK Sale of common and preferred stock 
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# Variable Description # Variable Description 
195 TLCF Tax loss carry forward 218 TXO Income taxes - other 
196 TSTK Treasury stock – total (all capital) 219 TXP Income tax payable 
197 TSTKC Treasury stock - common 220 TXPD Income taxes paid 
198 TSTKP Treasure stock – preferred 221 TXR Income tax refund 
199 TXACH Income taxes accrued increase/(decrease) 222 TXS Income tax state 
200 TXBCO Excess tax benefit stock options -cash flow  223 TXT Income tax total 
201 TXC Income tax – current 224 TXW Excise taxes 
202 TXDB Deferred taxes (balance sheet) 225 WCAP Working capital (balance sheet) 
203 TXDBA Deferred tax asset - long term 226 WCAPC Working capital change other increase/(decrease) 
204 TXDBCA Deferred tax asset - current 227 WCAPCH Working capital change total 
205 TXDBCL Deferred tax liability - current 228 XACC Accrued expenses 
206 TXDC Deferred taxes (cash flow) 229 XAD Advertising expense 
207 TXDFED Deferred taxes-federal 230 XDEPL Depletion expense (schedule VI) 
208 TXDFO Deferred taxes-foreign 231 XI Extraordinary items 
209 TXDI Income tax – deferred 232 XIDO Extra. items and discontinued operations 
210 TXDITC Deferred taxes and investment tax credit 233 XIDOC Extra. items and disc. operations (cash flow) 
211 TXDS Deferred taxes-state 234 XINT Interest and related expenses – total 
212 TXFED Income tax federal 235 XOPR Operating expenses – total 
213 TXFO Income tax foreign 236 XPP Prepaid expenses 
214 TXNDB Net deferred tax asset (liab) - total 237 XPR Pension and retirement expense 
215 TXNDBA Net deferred tax asset 238 XRD Research and development expense 
216 TXNDBL Net deferred tax liability 239 XRENT Rental expense 
217 TXNDBR Deferred tax residual 240 XSGA Selling, general and administrative expense 
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Table 2 
List of Financial Ratios and Configurations 
 
Table 2 lists the 76 financial ratios and configurations used in this study. Our sample period is 1963-2013. We begin with all accounting variables on the balance 
sheet, income statement, and cash flow statement included in the annual Compustat database. X represents the 240 accounting variables listed in Table 1. We 
exclude all variables with fewer than 20 years of data or fewer than 1,000 firms with non-missing data on average per year. We exclude per-share based variables 
such as book value per share and earnings per share. There are fifteen base variables, Y. They are AT (total assets), ACT (total current assets), INVT (inventory), 
PPENT (property, plant, and equipment), LT (total liabilities), LCT (total current liabilities), DLTT (long-term debt), CEQ (total common equity), SEQ 
(stockholders’ equity), ICAPT (total invested capital), SALE (total sale), COGS (cost of goods sold), XSGA (selling, general, and administrative cost), EMP 
(number of employees), and MKTCAP (market capitalization). 
 

# Description # Description # Description # Description # Description 
1 X/AT 16 ∆ in X/AT 31 %∆ in X/AT 46 ∆X/LAGAT 61 %∆ in X - %∆ in AT 
2 X/ACT 17 ∆ in X/ACT 32 %∆ in X/ACT 47 ∆X/LAGACT 62 %∆ in X - %∆ in ACT 
3 X/INVT 18 ∆ in X/INVT 33 %∆ in X/INVT 48 ∆X/LAGINVT 63 %∆ in X - %∆ in INVT 
4 X/PPENT 19 ∆ in X/PPENT 34 %∆ in X/PPENT 49 ∆X/LAGPPENT 64 %∆ in X - %∆ in PPENT 
5 X/LT 20 ∆ in X/LT 35 %∆ in X/LT 50 ∆X/LAGLT 65 %∆ in X - %∆ in LT 
6 X/LCT 21 ∆ in X/LCT 36 %∆ in X/LCT 51 ∆X/LAGLCT 66 %∆ in X - %∆ in LCT 
7 X/DLTT 22 ∆ in X/DLTT 37 %∆ in X/DLTT 52 ∆X/LAGDLTT 67 %∆ in X - %∆ in DLTT 
8 X/CEQ 23 ∆ in X/CEQ 38 %∆ in X/CEQ 53 ∆X/LAGCEQ 68 %∆ in X - %∆ in CEQ 
9 X/SEQ 24 ∆ in X/SEQ 39 %∆ in X/SEQ 54 ∆X/LAGSEQ 69 %∆ in X - %∆ in SEQ 
10 X/ICAPT 25 ∆ in X/ICAPT 40 %∆ in X/ICAPT 55 ∆X/LAGICAPT 70 %∆ in X - %∆ in ICAPT 
11 X/SALE 26 ∆ in X/SALE 41 %∆ in X/SALE 56 ∆X/LAGSALE 71 %∆ in X - %∆ in SALE 
12 X/COGS 27 ∆ in X/COGS 42 %∆ in X/COGS 57 ∆X/LAGCOGS 72 %∆ in X - %∆ in COGS 
13 X/XSGA 28 ∆ in X/XSGA 43 %∆ in X/XSGA 58 ∆X/LAGXSGA 73 %∆ in X - %∆ in XSGA 
14 X/EMP 29 ∆ in X/EMP 44 %∆ in X/EMP 59 ∆X/LAGEMP 74 %∆ in X - %∆ in EMP 
15 X/MKTCAP 30 ∆ in X/MKTCAP 45 %∆ in X/MKTCAP 60 ∆X/LAGMKTCAP 75 %∆ in X - %∆ in MKTCAP 
        76 %∆ in X 
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Table 3 
Percentiles of t-statistics for Actual and Simulated Long-Short Hedge Returns 
 
Table 3 presents selected percentiles of the t-statistics for long-short hedge returns of 18,113 fundamental signals constructed from the combination of 240 
accounting variables and 76 financial ratios and configurations.  The table also presents the percentiles of the t-statistics for the simulated long-short hedge returns 
for the same set of fundamental signals. Our sample period is 1963-2013. The list of 240 accounting variables and 76 financial ratios and configurations are given 
in Table 1 and Table 2, respectively. At the end of June of year t, we form decile portfolios based on the value of each fundamental signal in year t-1. We form the 
long-short portfolio based on the two extreme decile portfolios and hold them for 12 months. We choose long and short portfolios such that the average long-short 
hedge return is positive. A simulation run is a random sample of 606 months, drawn (with replacement) from the 606 calendar months between July 1963 and 
December 2013. P95 is the 95th percentile of t-statistics in the simulated data. P99 is the 99th percentile of t-statistics in the simulated data. 
 

Equal-Weighted Returns  Value-Weighted Returns
Percentiles Actual % Sim>Act P95 P99  Percentiles Actual % Sim>Act P95 P99 
100 10.18  0.0% 5.20 6.16  100 6.20  0.0% 4.76 5.37 
99 7.06  0.0% 3.01 3.46  99 3.63  0.0% 2.94 3.27 
98 6.05  0.0% 2.74 3.19  98 3.18  0.2% 2.67 2.96 
97 5.54  0.0% 2.58 3.02  97 2.90  0.5% 2.50 2.76 
96 5.18  0.0% 2.46 2.89  96 2.72  0.5% 2.38 2.62 
95 4.88  0.0% 2.36 2.79  95 2.58  0.7% 2.28 2.51 
90 3.74  0.0% 2.03 2.37  90 2.10  1.6% 1.93 2.13 
80 2.61  0.0% 1.62 1.93  80 1.61  2.5% 1.51 1.67 
70 2.01  0.0% 1.32 1.57  70 1.28  3.2% 1.23 1.36 
60 1.55  0.0% 1.09 1.29  60 1.03  3.5% 1.00 1.13 
50 1.21  0.2% 0.88 1.04  50 0.83  3.5% 0.81 0.92 
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Table 4 
Percentiles of t-statistics for Actual and Simulated Long-Short Alphas 
 
Table 4 presents selected percentiles of the t-statistics for alphas of the long-short hedge returns of 18,113 fundamental signals constructed from the combination 
of 240 accounting variables and 76 financial ratios and configurations. The table also presents the percentiles of the t-statistics for alphas for the same set of 
fundamental signals using simulated returns. Our sample period is 1963-2013. The list of 240 accounting variables and 76 financial ratios and configurations are 
given in Table 1 and Table 2, respectively. At the end of June of year t, we form decile portfolios based on the value of each fundamental signal in year t-1. We 
form the long-short portfolio based on the two extreme decile portfolios and hold them for 12 months. We choose long and short portfolios such that the average 
long-short hedge return is positive. A simulation run is a random sample of 606 months, drawn (with replacement) from the 606 calendar months between July 
1963 and December 2013. We estimate 1-, 3-, 4-factor alphas based on the market model, Fama and French (1996) model, and the Carhart (1997) model. P95 is 
the 95th percentile of t-statistics in the simulated data. P99 is the 99th percentile of t-statistics in the simulated data. 
 

Panel A: t-statistics for 1-factor alphas 
Equal-Weighted Returns  Value-Weighted Returns

Percentiles Actual % Sim>Act P95 P99  Percentiles Actual % Sim>Act P95 P99 
100 11.08  0.0% 5.08 5.85  100 6.57  0.0% 4.77 5.28 
99 7.72  0.0% 2.97 3.33  99 4.25  0.0% 2.94 3.24 
98 6.68  0.0% 2.72 3.12  98 3.74  0.0% 2.67 2.97 
97 6.20  0.0% 2.56 2.97  97 3.42  0.0% 2.50 2.79 
96 5.82  0.0% 2.43 2.85  96 3.19  0.0% 2.37 2.66 
95 5.43  0.0% 2.33 2.77  95 3.02  0.0% 2.27 2.54 
90 4.10  0.0% 2.01 2.39  90 2.47  0.0% 1.92 2.17 
80 2.82  0.0% 1.60 1.86  80 1.91  0.0% 1.51 1.70 
70 2.14  0.0% 1.31 1.51  70 1.53  0.1% 1.22 1.37 
60 1.66  0.0% 1.07 1.22  60 1.24  0.2% 1.00 1.10 
50 1.31  0.0% 0.86 0.99  50 1.00  0.2% 0.81 0.89 
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Panel B: t-statistics for 3-factor alphas 

Equal-Weighted Returns  Value-Weighted Returns

Percentiles Actual % Sim>Act P95 P99  Percentiles Actual % Sim>Act P95 P99 
100 10.02  0.0% 5.06 5.99  100 5.55  0.2% 4.83 5.24 
99 7.13  0.0% 2.98 3.21  99 3.95  0.0% 2.91 3.11 
98 6.23  0.0% 2.71 2.96  98 3.60  0.0% 2.63 2.80 
97 5.70  0.0% 2.54 2.78  97 3.35  0.0% 2.45 2.62 
96 5.33  0.0% 2.41 2.66  96 3.16  0.0% 2.32 2.49 
95 5.03  0.0% 2.30 2.54  95 3.02  0.0% 2.22 2.39 
90 4.01  0.0% 1.96 2.17  90 2.47  0.1% 1.87 2.01 
80 2.87  0.0% 1.56 1.70  80 1.86  0.1% 1.46 1.57 
70 2.24  0.0% 1.28 1.39  70 1.48  0.1% 1.19 1.27 
60 1.80  0.0% 1.04 1.15  60 1.18  0.1% 0.97 1.03 
50 1.43  0.0% 0.84 0.92  50 0.92  0.2% 0.77 0.83 

 
Panel C: t-statistics for 4-factor alphas 

Equal-Weighted Returns  Value-Weighted Returns

Percentiles Actual % Sim>Act P95 P99  Percentiles Actual % Sim>Act P95 P99 
100 8.91  0.0% 5.28 6.19  100 5.31  2.2% 5.01 5.56 
99 6.28  0.0% 3.19 3.46  99 3.29  1.5% 3.05 3.37 
98 5.50  0.0% 2.92 3.19  98 3.00  1.3% 2.75 3.07 
97 5.03  0.0% 2.75 3.04  97 2.79  1.3% 2.57 2.88 
96 4.68  0.0% 2.63 2.91  96 2.63  1.3% 2.43 2.73 
95 4.41  0.0% 2.53 2.80  95 2.51  1.3% 2.33 2.59 
90 3.59  0.0% 2.14 2.40  90 2.06  2.0% 1.95 2.17 
80 2.61  0.0% 1.69 1.90  80 1.60  2.1% 1.52 1.69 
70 1.99  0.0% 1.37 1.53  70 1.27  2.9% 1.23 1.37 
60 1.57  0.1% 1.12 1.23  60 1.03  3.2% 1.00 1.11 
50 1.24  0.1% 0.90 0.99  50 0.81  4.4% 0.80 0.89 
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Table 5 
Comparison of Standard Multiple-testing Methods 
 
Table 5 compares three multiple-testing methods, namely the Bonferroni test, Holm test, and BHY test.  Long-short hedge returns are based on 18,113 fundamental 
signals constructed from the combination of 240 accounting variables and 76 financial ratios and configurations.  The list of 240 accounting variables and 76 
financial ratios and configurations are given in Table 1 and Table 2, respectively. Our sample period is 1963-2013. At the end of June of year t, we form decile 
portfolios based on the value of each fundamental signal in year t-1. We form the long-short portfolio based on the two extreme decile portfolios and hold them for 
12 months. We choose long and short portfolios such that the average long-short hedge return is positive. A simulation run is a random sample of 606 months, 
drawn (with replacement) from the 606 calendar months between July 1963 and December 2013. We estimate 4-factor alphas based on the Carhart (1997) model. 
We refer the reader to Harvey, Liu, and Zhu (2014) for a detailed explanation of the Bonferroni, Holm, and BHY tests. 
 

Panel A: 5% Significance Level 
  Equal-weight     Value-weight  

Test 
t-stat 
cutoff 

Nominal 
p-value 

% significant 
Signals 

Test 
t-stat 
cutoff 

Nominal 
p-value 

% significant 
signals 

Bonferroni 4.58 0.0000 4.33% Bonferroni 4.58 0.0000 0.02% 
Holm 4.58 0.0000 4.37% Holm 4.63 0.0000 0.02% 
BHY 3.24 0.0006 12.93% BHY 5.03 0.0000 0.01% 

 
 

Panel B: 1% Significance Level 
  Equal-weight     Value-weight  

Test 
t-stat 
cutoff 

Nominal 
p-value 

% significant 
Signals 

Test 
t-stat 
cutoff 

Nominal 
p-value 

% significant 
signals 

Bonferroni 4.92 0.0000 3.23% Bonferroni 4.92 0.0000 0.01% 
Holm 4.92 0.0000 3.23% Holm 5.03 0.0000 0.01% 
BHY 3.80 0.0001 8.46% BHY – – 0.00% 
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Table 6 
Percentiles of t-statistics for Actual and Simulated Long-Short Alphas – Sub-periods 
 
Table 6 presents selected percentiles of the 4-factor alpha t-statistics during two sub-periods, 1963-1987 and 1988-2013. The table also presents the percentiles of 
the t-statistics for the simulated long-short hedge returns for the same set of fundamental signals. The list of 240 accounting variables and 76 financial ratios and 
configurations are given in Table 1 and Table 2, respectively. At the end of June of year t, we form decile portfolios based on the value of each fundamental signal 
in year t-1. We form the long-short portfolio based on the two extreme decile portfolios and hold them for 12 months. We choose long and short portfolios such 
that the average long-short hedge return is positive. A simulation run is a random sample of 606 months, drawn (with replacement) from the 606 calendar months 
between July 1963 and December 2013. We estimate 4-factor alphas based on the Carhart (1997) model. We require that each fundamental signal have at least 10 
years of data during each sub- period, which leaves us with 13,050 valid fundamental signals. 
 

 1963-1987  1988-2013 
 Equal-weight Value-weight   Equal-weight Value-weight 

Percentiles Actual % Sim>Act Actual % Sim>Act  Percentiles Actual % Sim>Act Actual % Sim>Act 
100 6.57 2.4% 4.90 12.6%  100 7.29 2.1% 5.50 8.7% 
99 5.03 0.0% 3.19 1.7%  99 5.34 0.0% 3.17 4.0% 
98 4.40 0.0% 2.82 3.2%  98 4.86 0.0% 2.88 3.3% 
97 4.06 0.0% 2.62 3.8%  97 4.55 0.0% 2.70 3.4% 
96 3.84 0.0% 2.46 4.5%  96 4.28 0.0% 2.56 3.5% 
95 3.67 0.0% 2.36 4.1%  95 4.09 0.0% 2.45 3.5% 
90 3.14 0.0% 2.00 3.5%  90 3.38 0.0% 2.06 3.5% 
80 2.45 0.0% 1.59 2.2%  80 2.60 0.0% 1.58 4.5% 
70 1.98 0.0% 1.30 1.7%  70 2.07 0.0% 1.25 6.8% 
60 1.61 0.0% 1.05 2.2%  60 1.64 0.0% 1.01 8.1% 
50 1.27 0.0% 0.86 1.6%  50 1.30 0.0% 0.80 10.3% 
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Table 7 
Transition Matrix and Performance Persistence between 1963-1987 and 1988-2013 
 
Table 7 presents transition matrix of t-statistics for 4-factor alphas from the first sub-period (1963-1987) to the second sub-period (1988-2013) and performance 
persistence between the two sub-periods. We construct 18,113 fundamental signals by combining 240 accounting variables and 76 financial ratios and 
configurations. The list of 240 accounting variables and 76 financial ratios and configurations are given in Table 1 and Table 2, respectively. At the end of June of 
year t, we form decile portfolios based on the value of each fundamental signal in year t-1. We form the long-short portfolio based on the two extreme decile 
portfolios and hold them for 12 months. We choose long and short portfolios such that the average long-short hedge return is positive. A simulation run is a random 
sample of 606 months, drawn (with replacement) from the 606 calendar months between July 1963 and December 2013. We estimate 4-factor alphas based on the 
Carhart (1997) model. We require that each fundamental signal have at least 10 years of data during each sub- period, which leaves us with 13,050 valid fundamental 
signals. 
 

Panel A: Transition Matrix       
  Equal-weight     Value-weight  
  1988-2013     1988-2013  
1963-1987 Q1 Q2 Q3 Q4 Q5  1963-1987 Q1 Q2 Q3 Q4 Q5 

Q1 50.65% 18.16% 14.10% 9.62% 7.47%  Q1 32.84% 23.07% 17.32% 15.90% 10.88% 
Q2 25.52% 24.25% 17.78% 16.32% 16.13%  Q2 21.38% 21.07% 21.42% 19.69% 16.44% 
Q3 11.49% 22.03% 21.57% 23.03% 21.88%  Q3 19.12% 20.08% 21.88% 21.76% 17.16% 
Q4 9.23% 19.16% 24.10% 23.49% 24.02%  Q4 16.25% 19.35% 21.99% 21.84% 20.57% 
Q5 3.10% 16.40% 22.45% 27.55% 30.50%  Q5 10.42% 16.44% 17.39% 20.80% 34.94% 

 
 

Panel B: Performance Persistence      
  Equal-weight    Value-weight  
 Raw return 1-factor α 3-factor α 4-factor α  Raw return 1-factor α 3-factor α 4-factor α 
D1 -0.43 -0.52 -0.39 -0.33  -0.20 -0.32 -0.16 -0.12 
 (-7.85) (-9.49) (-9.63) (-8.75)  (-2.71) (-4.54) (-4.36) (-3.54) 
          
D10 0.17 0.23 0.23 0.14  0.12 0.23 0.27 0.19 
 (3.90) (4.86) (2.43) (1.60)  (2.08) (3.92) (3.11) (2.60) 
          
D10-D1 0.60 0.75 0.62 0.47  0.32 0.54 0.43 0.31 
 (7.37) (9.22) (5.20) (4.18)  (2.59) (4.56) (3.88) (3.31) 

 
 
  



 

48 
 

Table 8 
Percentiles of t-statistics for Actual and Simulated Long-Short Alphas - By Firm Characteristics 
 
Table 8 presents selected percentiles of the t-statistics for long-short hedge returns of the18,113 fundamental signals for different types of stocks (classified by their 
size, B/M ratio, idiosyncratic volatility, institutional ownership, and analyst coverage). The table also presents the percentiles of the t-statistics for long-short hedge 
returns for the same set of fundamental signals using simulated returns. Our sample period is 1963-2013. The list of 240 accounting variables and 76 financial 
ratios and configurations are given in Table 1 and Table 2, respectively. At the end of June of each year, we form decile portfolios based on the last year-end (t-1) 
value of each fundamental signal. We also independently sort all sample firms into two portfolios based on firm size, B/M, idiosyncratic volatility, institutional 
ownership, and analyst coverage, respectively. For each sub-sample of firms by characteristics, we compute long-short hedge returns and the associated t-statistics 
based on the two extreme decile stocks and hold it for 12 months. We choose long and short portfolios such that the average long-short hedge return is positive. A 
simulation run is a random sample of 606 months, drawn (with replacement) from the 606 calendar months between July 1963 and December 2013. To ensure a 
sufficiently large sample, we require a minimum of 5 years of observation for a signal to be included in the analysis. We estimate 1-, 3-, 4-factor alphas based on 
the market model, Fama and French (1996) model, and the Carhart (1997) model. Superscripts ***, **, and * indicate statistical significance at 1, 5, and 10 percent 
levels, respectively. 
 

Panel A: Firm Size 
 Equal-Weight Value-Weight 
 Small Stocks Large Stocks 

Difference 
Small Stocks Large Stocks 

Difference 
Percentiles Actual %Sim>Act Actual %Sim>Act Actual %Sim>Act Actual %Sim>Act 
100 9.09 0.0% 4.51 20.6% 4.58*** 6.77 0.0% 4.72 10.1% 2.06*** 
99 6.22 0.0% 3.18 2.4% 3.04*** 4.44 0.0% 3.01 5.3% 1.43*** 
98 5.54 0.0% 2.88 2.4% 2.66*** 3.94 0.0% 2.69 6.1% 1.25*** 
97 5.02 0.0% 2.69 2.3% 2.33*** 3.67 0.0% 2.50 6.5% 1.17*** 
96 4.66 0.0% 2.52 2.7% 2.15*** 3.43 0.1% 2.37 6.2% 1.07*** 
95 4.42 0.0% 2.39 3.1% 2.03*** 3.26 0.1% 2.25 6.7% 1.01*** 
90 3.55 0.0% 2.00 3.4% 1.55*** 2.70 0.1% 1.89 6.8% 0.82*** 
80 2.56 0.0% 1.56 3.4% 0.99*** 2.04 0.1% 1.47 7.6% 0.57*** 
70 1.95 0.0% 1.25 4.4% 0.70*** 1.63 0.1% 1.17 11.0% 0.46*** 
60 1.55 0.0% 1.03 3.3% 0.52*** 1.30 0.2% 0.94 14.2% 0.36*** 
50 1.22 0.0% 0.83 2.9% 0.38*** 1.03 0.2% 0.73 26.2% 0.30*** 
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Panel B: IVOL 

 Equal-Weight Value-Weight 
 High IVOL Low IVOL 

Difference 
High IVOL Low IVOL 

Difference 
Percentiles Actual %Sim>Act Actual %Sim>Act Actual %Sim>Act Actual %Sim>Act 
100 9.70 0.0% 6.73 0.2% 2.98*** 4.90 20.0% 4.96 5.5% -0.06 
99 6.47 0.0% 4.25 0.0% 2.21*** 3.25 2.7% 2.98 6.0% 0.27 
98 5.73 0.0% 3.78 0.0% 1.95*** 2.93 3.4% 2.67 7.2% 0.26 
97 5.19 0.0% 3.50 0.0% 1.68*** 2.70 4.7% 2.49 7.2% 0.21 
96 4.74 0.0% 3.30 0.0% 1.44*** 2.56 4.8% 2.35 7.7% 0.21 
95 4.44 0.0% 3.14 0.0% 1.30*** 2.44 5.1% 2.23 8.9% 0.21 
90 3.61 0.0% 2.61 0.0% 1.00*** 2.04 5.5% 1.90 6.4% 0.14 
80 2.58 0.0% 2.02 0.0% 0.56*** 1.57 6.6% 1.49 5.4% 0.08 
70 1.92 0.0% 1.64 0.0% 0.28*** 1.27 6.7% 1.19 7.4% 0.08 
60 1.50 0.0% 1.33 0.0% 0.16** 1.02 9.0% 0.96 9.3% 0.05 
50 1.16 0.0% 1.09 0.0% 0.07 0.80 11.5% 0.76 12.6% 0.04 

 
 
 

Panel C: IO 
 Equal-Weight Value-Weight 
 Low IO High IO 

Difference 
Low IO High IO 

Difference 
Percentiles Actual %Sim>Act Actual %Sim>Act Actual %Sim>Act Actual %Sim>Act 
100 10.05 0.0% 5.49 6.2% 4.56*** 5.19 6.6% 4.46 26.9% 0.73 
99 6.07 0.0% 3.82 0.3% 2.24*** 3.39 1.0% 2.96 11.4% 0.43** 
98 5.46 0.0% 3.52 0.1% 1.94*** 3.02 1.2% 2.62 15.7% 0.40** 
97 5.03 0.0% 3.31 0.1% 1.71*** 2.80 1.5% 2.45 15.9% 0.35** 
96 4.59 0.0% 3.14 0.1% 1.45*** 2.62 1.8% 2.33 15.1% 0.30* 
95 4.33 0.0% 3.01 0.1% 1.33*** 2.50 2.1% 2.21 16.7% 0.28* 
90 3.47 0.0% 2.48 0.1% 0.99*** 2.05 3.6% 1.84 19.3% 0.21* 
80 2.49 0.0% 1.93 0.1% 0.56*** 1.57 5.5% 1.44 19.0% 0.13 
70 1.93 0.0% 1.53 0.2% 0.40*** 1.26 6.4% 1.16 20.5% 0.10 
60 1.54 0.0% 1.24 0.2% 0.30*** 1.01 8.5% 0.92 27.6% 0.09 
50 1.22 0.0% 0.98 0.4% 0.24*** 0.81 8.3% 0.73 31.3% 0.07 
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Panel D: Analyst Coverage 

 Equal-Weight Value-Weight 
 Low Coverage High Coverage 

Difference 
Low Coverage High Coverage 

Difference 
Percentiles Actual %Sim>Act Actual %Sim>Act Actual %Sim>Act Actual %Sim>Act 
100 9.96 0.1% 6.40 1.3% 3.56*** 5.84 1.8% 4.38 36.3% 1.45* 
99 6.76 0.0% 3.94 0.2% 2.82*** 3.90 0.0% 3.07 5.1% 0.83*** 
98 5.80 0.0% 3.53 0.2% 2.27*** 3.48 0.0% 2.74 6.4% 0.74*** 
97 5.30 0.0% 3.28 0.3% 2.02*** 3.25 0.0% 2.57 6.1% 0.68*** 
96 4.92 0.0% 3.11 0.3% 1.82*** 3.05 0.0% 2.44 5.9% 0.61*** 
95 4.63 0.0% 2.97 0.3% 1.66*** 2.89 0.0% 2.31 6.8% 0.57*** 
90 3.72 0.0% 2.51 0.2% 1.21*** 2.36 0.0% 1.93 8.2% 0.43*** 
80 2.64 0.0% 1.95 0.2% 0.68*** 1.79 0.1% 1.47 13.9% 0.31*** 
70 2.06 0.0% 1.55 0.3% 0.51*** 1.43 0.2% 1.17 18.7% 0.26*** 
60 1.64 0.0% 1.24 0.5% 0.40*** 1.15 0.2% 0.94 22.4% 0.21*** 
50 1.29 0.0% 1.00 0.5% 0.29*** 0.92 0.2% 0.75 24.3% 0.17*** 
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Table 9 
Long-Short Hedge Returns and Investor Sentiment 
 
Table 9 compares the 4-factor alphas of fundamental signals following high-sentiment periods and low-sentiment 
periods. Our sample period is 1963-2013. At the end of June of year t, we form decile portfolios based on the value 
of each fundamental signal in year t-1. We form the long-short portfolio based on the two extreme decile portfolios 
and hold them for 12 months. We choose long and short portfolios such that the average long-short hedge return is 
positive. We split the sample into high-sentiment periods and low-sentiment periods using the median sentiment level 
of Baker and Wurgler (2006) sentiment index.  Top 10%, 5% and 1% signals are ranked based on 4-factor alpha t-
statistics. We estimate 4-factor alphas based on the Carhart (1997) model. Alphas are expressed in percent per month. 
Numbers in parentheses are t-statistics. 
 

 Equal-weight   Value-weight 

Signals 
High 

Sentiment 
Low 

Sentiment 
Difference  Signals 

High 
Sentiment 

Low 
Sentiment 

Difference 

Top 10% 0.56 0.36 0.20  Top 10% 0.62 0.29 0.33 
 (11.25) (9.02) (3.15)   (10.61) (6.40) (4.47) 
Top 5% 0.63 0.41 0.22  Top 5% 0.70 0.31 0.39 
 (10.82) (8.67) (2.97)   (10.38) (5.73) (4.55) 
Top 1% 0.76 0.49 0.26  Top 1% 0.88 0.35 0.53 
 (10.53) (8.57) (2.84)   (10.45) (4.91) (4.83) 
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Table 10  
Long-Short Hedge Returns around Earnings Announcement Days 
 
Table 10 presents long-short hedge returns around earnings announcement days.  Our sample period is 1970-2013. 
The list of 240 accounting variables and 76 financial ratios and configurations are given in Table 1 and Table 2, 
respectively. At the end of June of year t, we form decile portfolios based on the value of each fundamental signal in 
year t-1. We form the long-short portfolio based on the two extreme decile portfolios and hold them for 12 months. 
We choose long and short portfolios such that the average long-short hedge return is positive. We also compute the 
cumulative returns over the 3-day period around each of the subsequent four quarterly earnings announcement dates 
and then take the difference between long and short (EAR). Ratio is the percentage of total long-short return accounted 
by EAR. Top 10%, 5% and 1% signals are ranked based on 4-factor alpha t-statistics. All returns are expressed as 
percent per year. Numbers in parentheses are t-statistics. 
 

 Equal-weight   Value-weight 

Signals EAR 
Hedge 
Return 

Ratio  Signals EAR 
Hedge 
Return 

Ratio 

Top 10% 1.05 6.04 17.4%  Top 10% 0.54 4.31 12.5% 
 (8.12) (8.58)    (2.76) (5.35)  
Top 5% 1.29 7.02 18.4%  Top 5% 0.62 4.66 13.3% 
 (9.03) (8.47)    (2.69) (4.93)  
Top 1% 1.54 8.55 18.0%  Top 1% 0.74 5.87 12.6% 
 (8.34) (8.48)    (2.56) (4.49)  
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Table 11  
Percentiles of Actual and Simulated Long-Short Alphas 
 
Table 11 presents selected percentiles of long-short hedge alphas based on 18,113 fundamental signals constructed from the combination of 240 accounting 
variables and 76 financial ratios and configurations.  The table also presents the percentiles of the long-short hedge alphas for the same set of fundamental signals 
using simulated returns. Our sample period is 1963-2013. The list of 240 accounting variables and 76 financial ratios and configurations are given in Table 1 and 
Table 2, respectively. At the end of June of year t, we form decile portfolios based on the value of each fundamental signal in year t-1. We form the long-short 
portfolio based on the two extreme decile portfolios and hold them for 12 months. We choose long and short portfolios such that the average long-short hedge 
return is positive. A simulation run is a random sample of 606 months, drawn (with replacement) from the 606 calendar months between July 1963 and December 
2013. We estimate 1-, 3-, and 4-factor alphas based on the market model, Fama and French (1996) model, and the Carhart (1997) model. Alphas are expressed in 
percent per month. 
 

 Equal-Weight Value-Weight 
 1-factor α 3-factor α 4-factor α 1-factor α 3-factor α 4-factor α 

Percentiles Actual % Sim>Act Actual % Sim>Act Actual % Sim>Act Actual % Sim>Act Actual % Sim>Act Actual % Sim>Act
100 2.91 67.1% 2.94 64.8% 2.63 81.6% 2.91 75.3% 2.73 84.9% 2.62 95.5% 
99 1.10 1.2% 0.97 12.6% 0.93 28.7% 1.00 25.3% 0.94 50.6% 0.91 74.8% 
98 0.94 0.3% 0.84 0.9% 0.79 1.7% 0.87 1.6% 0.79 10.2% 0.74 44.5% 
97 0.85 0.2% 0.76 0.3% 0.71 0.4% 0.79 0.5% 0.72 2.3% 0.65 25.7% 
96 0.78 0.1% 0.70 0.2% 0.64 0.2% 0.72 0.3% 0.67 1.5% 0.60 10.5% 
95 0.73 0.0% 0.65 0.2% 0.60 0.0% 0.67 0.3% 0.63 0.7% 0.56 5.4% 
90 0.57 0.0% 0.51 0.1% 0.47 0.0% 0.53 0.2% 0.50 0.4% 0.44 1.7% 
80 0.39 0.0% 0.38 0.0% 0.34 0.0% 0.38 0.1% 0.36 0.4% 0.31 2.4% 
70 0.29 0.0% 0.29 0.0% 0.26 0.0% 0.30 0.1% 0.28 0.2% 0.24 2.5% 
60 0.23 0.0% 0.23 0.0% 0.21 0.0% 0.24 0.1% 0.22 0.3% 0.19 2.3% 
50 0.17 0.0% 0.18 0.0% 0.16 0.0% 0.19 0.1% 0.17 0.3% 0.15 2.3% 

 
 

 


